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Abstract - In this study are examined the recent theoretical studies and applications of pure and mixed double and 
triple-entangled states. After getting acquainted with the basic concepts of the traditional methodologies for 
entanglement, are summarized the main phenomena and observations of the various approaches for multidimensional 
entanglement. More specifically, we explore the impact of the various parameters of these systems of the 
entanglement.in this research is proposed algorithmic model for transformation of mixed entangled states, a 
disappointing qubit can be removed by a GHZ state through the measurement of it along the spin axis perpendicular to 
the axis of entanglement and with the aid of the result of the measurement to be made a correction of the phase.  
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1. INTRODUCTION 
 
Any multipartite unitary transformation can be 
factorized as a product of unipartite gates and 
bipartite CNOT gates [1]. The controlled 
multipartite interaction between the qubits creates 
the so-called entangled states, which are interesting 
except for the fundamental study of the quantum 
mechanics, and also find application in the ultra-
precision spectroscopy [7] and in the quantum 
information [1]. An entangled state is a multipartite 
state, the wave vector of which cannot be 
represented as a Tensor product of the individual 
single-part wave vectors. As an example of such 
entangled state is the two-qubit Bell state 
 

|𝐵𝑒𝑙𝑙⟩ =
1
√2

(|01⟩|02⟩+ |11⟩|12⟩) 

 
Where  |𝑛1,2� (𝑛 = 1,2) is the state, respectively of 
the first and second qubit. According to the 
probabilistic interpretation of the quantum 
mechanics, if the first qubit is found in the state |01⟩ 
or |11⟩, then the second qubit will be in the state 

|12⟩ or |01⟩, even when there is no physical 
interaction between them.  
 
In this study are examined the recent theoretical 
studies and applications of pure and mixed double 
and triple-entangled states. After getting 
acquainted with the basic concepts of the 
traditional methodologies for entanglement, are 
summarized the main phenomena and 
observations of the various approaches for 
multidimensional entanglement. More specifically, 
we explore the impact of the various parameters of 
these systems of the entanglement. The specific 
advantages of the use of the atomic Wehrl and 
Shannon entropy are highlighted. On the basis of 
this result, we propose a general model for the 
reduction of triple-entanglement to a system with 
two levels. We reveal new normal algebraic models 
for transitions between mixed entangled states and 
specific eigenvalues of systems with two and three 
levels, as well as some remarkable properties of the 
entanglements, which may reveal a new look on 
the quantum correlations, which are present in the 
models on several levels. In addition, we propose 
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an intuitive idea for the behavior of mixed 
entangled state in the presence of the decoherence. 
In this study numerically is identified and 
demonstrated the region of the parameters, in 
which can be obtained a significant entanglement.  
 
Entangled states are experimentally demonstrated 
in various physical systems, such as ions in ion 
trap, photons, atoms in a resonator, Bose-Einstein 
condensate in an optical grid, quantum points, etc. 
A step to the understanding of the role of the 
entangled states in the quantum information is the 
introduction of the model of the unidirectional 
quantum computer [8]. In this new model, the 
system of qubits is prepared in an entangled cluster 
state. The creation of various one-qubit and two-
qubit gates is carried out by a measurement of a 
certain number of qubits, in this way the cluster 
state is destroyed, therefore the process is 
irreversible (unidirectional). An interesting 
problem in the quantum information is the use of 
systems with more than two states, called quNits. 
The reason for this is the fact that in a system of 
N states the information is encoded in 2 (N-1) real 
parameters. As a comparison, the qubit 
information is encoded in two parameters: one 
population and one phase. Therefore, the use of 
quNits instead of qubits would lead to a significant 
reduction of the number of parts, necessary for the 
carrying out of a given quantum algorithm. A 
major problem in the quantum information is the 
unwanted interaction between the qubits and their 
surrounding environment, leading to an 
irreversible loss of coherence. An example of such 
incoherent processes are the dephasing and the 
spontaneous emission.  
 
 

2. THE APPROACH 
 
General requirements when measuring 
entanglement:  
• C = 0 for multiplication of states ρ = ρ𝐴⨂ρ𝐵. 
• C is a constant for local unitary transformations. 
The measurement is independent of the choice of 
basis. 
 

The measure, which fulfills these requirements for 
the pure states is the entropy of entanglement. This 
is one of the simplest measures for quantum 
entanglement. It uses the von Neumann entropy of 
the operator for density  
 
𝑆(ρ) = −𝑇𝑟{ρ 𝑙𝑜𝑔2(ρ)}   (1) 
 
It disappears for a pure state, when all populations 
are 0 or 1 and reaches its maximum for a 
completely mixed state, when 
 

𝑆 �1
𝑁

1� = − 1
𝑁
𝑇𝑟 �ρ 𝑙𝑜𝑔2

1
𝑁

1� = 𝑙𝑜𝑔2𝑁  
 (2) 

 
where N is a dimension of the Hilbert space. The 
Von Neumann entropy is related to the measure for 
information of Shannon, which is important in the 
context of information capacity and to the Gibbs 
entropy from the statistical mechanics. An useful 
interpretation of the von Neumann entropy is that 
it represents the minimum number of the bits 
needed for storing the result of a random variable: 
A pure state ρ1 = |Ψ⟩⟨Ψ| can always be stored in its 
eigenbase as 
 

ρ1 = �1 0
0 0�   (3) 

 
Its entropy disappears, 
 
𝑆(ρ1) = 1 𝑙𝑜𝑔2(1) + 0𝑙𝑜𝑔2(0) = 0   (4) 
 
An appropriate measurement of the observed σz 
which always gives the result +1 and information 
obtained from such a measurement disappears. For 
the maximum mixed state  
 

ρ2 = 1
2
�1 0

0 1�   (5) 

 
However, the entropy reaches its maximum value 
 

𝑆(ρ2) = −𝑇𝑟 ��
1
2

0

0 1
2

� 𝑙𝑜𝑔2 �
1
2

0

0 1
2

�� =

 𝑇𝑟 ��
𝑙𝑜𝑔22 0

0 𝑙𝑜𝑔22�� = 1   (6) 
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Here each binary variable generates completely 
random values. Therefore each result must be 
represented in one bit, compression is not possible. 
 
The entropy of entanglement for bipartite pure 
states is determined by the von Neumann entropy 
of one of the reduced states:  
 
𝐸(ρ) = 𝑆(ρ𝐴) = 𝑆(ρ𝐵)   (7) 
 
where ρ𝐴 = 𝑇𝑟𝐵(ρ) and vice versa. If ρ is a product 
state, as |↑↑⟩, ρ𝐴 and ρ𝐵 are pure states and the 
entropy disappears. If the state is maximally 
entangled, e.g. 
 
|Ψ⟩ = 1

√2
(|↑↑⟩+ |↓↓⟩)   (8) 

 
the subsystems become completely mixed, ρA = ρB 
= 1
2

1. The corresponding entropy of entanglement, 
the entropy of the maximally entangled 2-qubit 
states is  𝐸(ρ) = 𝑆(ρ𝐴) = 𝑆(ρ𝐵) = 1 
 
 
Concurrence of pure 2-qubit states 
 
|Ψ⟩ = 𝛼|↑↑⟩+ 𝛽|↑↓⟩+ 𝛾| ↓ ↑⟩ + 𝛿|↓↓⟩  
 (9) 
is 
 
𝐶 ∶= 2|𝛼𝛿 − 𝛽𝛾| ≥ 0   (10) 
 
C (Ψ1) = 0, i.e. the state is not entangled. In the 
same way, for  
 
Ψ2 = 1

2
(| ↑⟩+ | ↓⟩)⨂(| ↑⟩+ | ↓⟩) = 1

2
(1, 1, 1, 1) 

 (11) 
 
again we find C (Ψ2) = 0.  
 
The effect of an "entangling gate", is similar to the 
one of a CNOT gate, if ϕ = π, 
 

𝐶𝑁 =

⎝

⎜
⎛

1
1

𝑐𝑜𝑠 φ
2

−𝑠𝑖𝑛φ
2

𝑠𝑖𝑛 φ
2

𝑐𝑜𝑠 φ
2 ⎠

⎟
⎞

 (12) 

 
But 
 

Ψ3 = 𝐶𝑁 .Ψ2 =  1
2
�1, 1, 𝑐𝑜𝑠 φ

2
− 𝑠𝑖𝑛φ

2
, 𝑐𝑜𝑠 φ

2
+ 𝑠𝑖𝑛φ

2
� 

 (13) 
 
This corresponds to "pre-measurement" in the 
theory of the quantum measurement that entangles 
the system with the apparatus. For this state, the 
concurrence is Ψ3 = 𝑠𝑖𝑛 φ

2
. Therefore, the state 

entangles for each end angle φ. The entanglement 
reaches its maximum of 1/2 for ϕ = π, where CN ≈ 
CNOT, with the exception of the sign - and returns 
to 0 for ϕ = 2π.  
 
Also the entropy of the entanglement for this state 
can be calculated. The operator of full density has 
the form 
 

𝜌3 = 1
4

⎝

⎜
⎛

1 1
1 1

𝐶− 𝐶+
𝐶− 𝐶+

𝐶− 𝐶−
𝐶+ 𝐶+

1− 𝑠𝑖𝑛 φ  𝑐𝑜𝑠 φ
4

𝑐𝑜𝑠 φ
4

1 + 𝑠𝑖𝑛 φ⎠

⎟
⎞

  (14) 

 
Where 
 
𝐶∓ =  𝑐𝑜𝑠 φ

2
∓  𝑠𝑖𝑛φ

2
  (15) 

 
In this article is shown how to "erase" a qubit of 
GHZ state. 
 
For the subsystems is obtained 
 

𝜌𝐴 = 𝑇𝑟𝐵(𝜌) = 1
2
�

1 𝑐𝑜𝑠 φ
2

𝑐𝑜𝑠 φ
2

1
�  (16) 

 

𝜌𝐵 = 𝑇𝑟𝐴(𝜌) = 1
2
�

1 − 1
2
𝑠𝑖𝑛 φ 𝑐𝑜𝑠2 φ

2

𝑐𝑜𝑠2 φ
2

1 + 1
2
𝑠𝑖𝑛 φ

�  (17) 

 
Where we use trigonometric identity 1 +
𝑐𝑜𝑠 φ 4 = 𝑐𝑜𝑠2 φ 2⁄⁄ . The difference between ρA and 
ρB reflects the asymmetric role between the control 
and the target bit in the CNOT operator. 
 
The dependence is different from the one of 
concurrence C(Ψ3) for the same state, which starts 
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linearly with φ and reaches a maximum value of 
0.5. However, both entanglements reach the 
maximum for one and the same state and 
disappear when the state is separable. 
 
For density matrices, the concurrence is defined as 
 
𝐶(𝜌) = max (0,λ1 − λ2 − λ3 − λ4)  (18) 
 
Where are λ𝑖 eigenvalues of a Hermitian operator 
in increasing order. 
 

𝑅 = ��𝜌𝜌��𝜌    𝜌� = �𝜎𝑦⨂𝜎𝑦� 𝜌∗�𝜎𝑦⨂𝜎𝑦�  (19) 

 
The concurrence and the entropy determine 
quantitative the entanglement between 2 qubits. In 
a 3-qubit system ABC, the qubits can be more 
entangled by pairs, i.e. A can become entangled 
with B or C, but there are also three-way entangled 
states, which are not entangled by pairs. 
 
The three-way entanglements can be quantitatively 
determined by several measures for entanglement, 
which are called "tangle". 
 

𝜏2 = 𝐶122 +𝐶232 +𝐶132

3
  (20) 

 
Where Cik measures the entanglement by pairs 
between qubits i and k. Each of them is determined 
by tracing through the third qubit and then using 
equation (18) for the resulting 2-qubit subspace, 
which can be pure or entangled.  
The entanglement between the one qubit and two 
others can be measured by bipartite concurrence 
 
𝐶𝑖(𝑗𝑘) = �2− 2𝑇𝑟(𝜌𝑖2)   (21) 
 
Where ρi is the subsystem of qubit i, obtained by 
tracing over the two other qubits. If the pure 3-
qubit state is a product state, ρi is a pure state and 
therefore ρi = 𝜌𝑖2 and Tr(𝜌𝑖2) = 1 and 𝐶𝑖(𝑗𝑘) = 0. For 
an entangled state Tr(𝜌𝑖2) < 1 and 𝐶𝑖(𝑗𝑘) > 0. For a 

maximally entangled state ρi = 1
2

1 and 𝐶𝑖(𝑗𝑘) = 1. 
 
This bipartite concurrence indicates whether a 
given qubit i is entangled with only one of the two 

other qubits or with both. This can be determined 
quantitatively by triple-entanglement τ3, which 
subtracts the entangled pairs of qubits i with 𝑗 and 
𝑘 from the bipartite concurrence in order to obtain 
the essential three-way entanglement of a pure 
three qubit state: 
 
𝜏3 = 𝐶𝑖(𝑗𝑘)

2 − (𝐶𝑖𝑗2 + 𝐶𝑖𝑘2 )  (22) 
 
The difference between pure 2-way and 3-way 
entanglement can be viewed by considering the 
GHZ and W states: 
 
|𝑊⟩001 = 1

√3
(|001⟩+ |010⟩ + |100⟩)    

 |𝐺𝐻𝑍∓⟩ = 1
√2

(|000⟩ ∓ |111⟩) 

 

 
Figure 1 𝐺𝐻𝑍 and 𝑊 entanglements 

 
The essential difference between these states 
becomes evident, if a measurement on one of the 
three qubits is carried out. In the case of the GHZ 
state, if for example is measured qubit 3 and is 
obtained the result 0, the system collapses in the 
state |000⟩. Clearly this is not anymore an 
entangled state, and the measurement of each one 
of the qubits completely destroys the entanglement. 
This is due to the nature of the three-way 
entanglement. If the third qubit of the W state is 
measured and is obtained the result 0, the states 
|010⟩ и |100⟩ are preserved, at which the first two 
qubits are still maximally entangled. For that 
reason, this type of entanglement is called bipartite 
entanglement. 
 
The various types of entanglements are 
complementary to each other: If the system is three-
way entangled, its bipartite entanglements cannot 
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be large. This can be expressed quantitatively for a 
system with three qubits 
 
𝜏3 + 𝜏2(𝑘) + 𝑆𝑘2 = 1  (23) 
 
Here, Sk characterizes quantitatively the single state 
of qubit к. 𝜏2(𝑘) is the two-way entanglement of the 
qubit к with the other qubits and τ3 expresses the 
nature of the three-way entanglement. 
 
GHZ Triplets and Bell Pairs 
 
A Bell pair is a set of two qubits in superposition of 
all OFF and ON, i.e. in the state  1

√2
|00⟩+ 1

√2
|11⟩. A 

GHZ state is similar to a Bell pair, but with more 
involved qubits. For instance, a GHZ triplet is a set 
of three qubits in the state 1

√2
|000⟩+ 1

√2
|111⟩. 

 
It can be expected that, the qubits in a GHZ state 
are "more entangled" compared to the qubits in a 
Bell pair, because the superposition is greater, but 
in fact the opposite is true. Due to the monogamy 
of the entanglement, the qubits in a Bell pair are 
more entangled with one another than the qubits in 
a GHZ state. The third qubit in a GHZ triplet has a 
tendency to be rather unnecessary than useful. 
 
Because the Bell pairs can be used for certain tasks, 
which cannot be carried out by GHZ states (e.g.  
superdense coding), it is good to be reduced a GHZ 
state into a Bell pair by removing one of the qubits. 
Previously it was accepted, that the only way for 
this is to find the unwanted qubit with a controlled 
NOT, controlled by one of the other participating 
qubits. This clears the unwanted qubit by reversing 
its value in the part all-ON of the superposition 
while leaving only in the part all-OFF of the 
superposition. 
 
The approach with the controlled NOT works well, 
but requires the unwanted qubit to be in the same 
place as one of the other qubits (due to the 
quantum controlled operation). The satisfaction of 
this condition, usually, requires moving the qubits 
(e.g. if quantum channels with available bandwidth 
are necessary). 
 

It appears that it is possible the payment of this 
price of the quantum bandwidth to be avoided. By 
finding the qubit with a Hadamard gate to cover its 
value, measuring it, and using the result of the 
measurement to fix the problem with parity of the 
phase, it is only necessary to be used a classical 
bandwidth. This is called the "erasing" of the qubit. 
 
 
Manipulation of the circuit 
 
The easiest way for understanding the approach 
with the "erasing" is by starting with the circuit for 
the approach with controlled NOT and applying 
several simple, apparently correct transformations. 
 
For a start is given a circuit that creates a GHZ 
triplet, then uses a controlled NOT in order to 
eliminate the third qubit of the GHZ state: 
 
Creates a GHZ state 

 
Figure 2 GHZ state 1 

 
After the third qubit has been cleared, it can be 
found with any operation (since it is not used for 
anything else). With the aid of the power of the 
informed foresight let it be found with a Hadamard 
gate and then measured: 
 
Creates a GHZ state 

 
Figure 3  GHZ state 2 

 
Now is the time to jump the Hadamard gate over 
the NOT gate. This is permitted, but transforms the 
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value-shifting NOT gate into a phase-shifting Z 
gate (because H⋅X=Z⋅H): 
 
Creates a GHZ state 

 
Figure 4  GHZ state 3 

 
The Z gates are similar to controlled operations, in 
that they have no effect on qubits that are OFF. In 
the end, the exchange of a Z gate with one of its 
controls does not change its effect. Let's check this: 
 
Creates a GHZ state 

 
Figure 5  GHZ state 4 

 
The presence of the control of the third wire is 
useful, because the controls are moving with 
measurements (i.e. the classical conditions are 
equivalent to the quantum conditions). This allows 
the performance of the phase correction after the 
measurement instead of before it: 
 
Creates a GHZ state 
 
 

 
Figure 6  GHZ State 

 
 

This is the final circuit: 
 
1. It begins in a state |000⟩.  
2. It creates a GHZ triplet in state 1

√2
|000⟩ + 1

√2
|111⟩ 

. 
3. If finds the third qubit with a Hadamard, passing 
to the state  
1
√2
�000⟩ + 1

√2
�001⟩+ 1

√2
|110⟩+ 1

√2
|111⟩. 

4. It measures the third qubit, shrinking the system 
into either the state 1

√2
(|00⟩+ |11⟩)|0⟩ , or in the 

state 1
√2

(|00⟩ − |11⟩)|1⟩. 

5. It fixes the minus sign in the result "the third 
qubit was ON" with a Z gate, controlled by the 
result of the measurement. 
6. It ends with the first two qubits unconditionally 
in a Bell pair in the state  1

√2
|00⟩ + 1

√2
|11⟩  . 

 
Still is necessary the sending of information about 
the third qubit to the second qubit, but the 
transmitted information is classical (i.e. a result of 
measurement) instead of quantum (i.e. the original 
qubit). The method also works for larger GHZ 
states involving more qubits: qubits can be 
removed from the state one by one through the 
application of 
Hadamard+measurement+conditional Z qubit still 
in the state. 
 
Updated solution of “Algorithm for switching 4 - 
bit packages in full quantum network with 
multiple network nodes” 
 
Because the solution from the previous article for a 
puzzle for quantum network flow [20] involves 
removal of a qubit of a GHZ state, with the aid of 
the "reduction" is allowed several parts of the 
network to be downgraded from quantum to 
classical. 
 
Here is a diagram of the improved decision: 
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Figure 7 Algorithm for switching 4 - bit packages 
in full quantum network with multiple network 

nodes 
 

 
 

3. CONCLUSION 
 

Through the proposed algorithmic model for 
transformation of mixed entangled states, a 
disappointing qubit can be removed by a GHZ 
state through the measurement of it along the spin 
axis perpendicular to the axis of entanglement and 
with the aid of the result of the measurement to be 
made a correction of the phase. 
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